Copied to
clipboard

G = M4(2).C23order 128 = 27

4th non-split extension by M4(2) of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial, rational

Aliases: C42.11C23, M4(2).4C23, 2- 1+4.8C22, C4⋊Q84C22, C4≀C22C22, C4○D4.18D4, D4.54(C2×D4), Q8.54(C2×D4), C4.87C22≀C2, (C2×D4).300D4, D4.8D43C2, C8⋊C228C22, (C2×C4).12C24, (C2×Q8).235D4, C4○D4.7C23, C4.57(C22×D4), D4.10D43C2, D8⋊C227C2, (C2×D4).36C23, C4.4D42C22, C23.237(C2×D4), (C22×C4).111D4, C8.C229C22, (C2×Q8).28C23, C42⋊C225C2, C22.61C22≀C2, C4.10D49C22, (C2×2- 1+4)⋊4C2, C22.36(C22×D4), (C22×C4).282C23, C23.38C235C2, C42⋊C2.99C22, (C2×M4(2)).46C22, (C22×Q8).266C22, (C2×C4).25(C2×D4), C2.57(C2×C22≀C2), (C2×C4.10D4)⋊9C2, (C2×C4○D4).108C22, SmallGroup(128,1752)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — M4(2).C23
C1C2C22C2×C4C22×C4C22×Q8C2×2- 1+4 — M4(2).C23
C1C2C2×C4 — M4(2).C23
C1C2C22×C4 — M4(2).C23
C1C2C2C2×C4 — M4(2).C23

Generators and relations for M4(2).C23
 G = < a,b,c,d,e | a8=b2=c2=1, d2=a4, e2=a6, bab=a5, cac=a3, dad-1=a5b, ae=ea, cbc=ebe-1=a4b, bd=db, dcd-1=a4c, ece-1=a6c, ede-1=a4bd >

Subgroups: 636 in 349 conjugacy classes, 106 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), D8, SD16, Q16, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C4.10D4, C4≀C2, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C2×M4(2), C4○D8, C8⋊C22, C8⋊C22, C8.C22, C8.C22, C22×Q8, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4○D4, 2- 1+4, 2- 1+4, C2×C4.10D4, C42⋊C22, D4.8D4, D4.10D4, C23.38C23, D8⋊C22, C2×2- 1+4, M4(2).C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, C2×C22≀C2, M4(2).C23

Character table of M4(2).C23

 class 12A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O8A8B8C8D
 size 11222444482222444444448888888
ρ111111111111111111111111111111    trivial
ρ211111-1-1-1-1-11111111-1-1-1-11-1-1-11111    linear of order 2
ρ311-11-11-1-111-1-111-1-111-1-1111-1-111-1-1    linear of order 2
ρ411-11-1-111-1-1-1-111-1-11-111-11-11111-1-1    linear of order 2
ρ511-11-111-1-11-1-11111-1-11-11-1-1-111-11-1    linear of order 2
ρ611-11-1-1-111-1-1-11111-11-11-1-111-11-11-1    linear of order 2
ρ7111111-11-111111-1-1-1-1-111-1-11-11-1-11    linear of order 2
ρ811111-11-11-11111-1-1-111-1-1-11-111-1-11    linear of order 2
ρ9111111111-1111111111111-1-1-1-1-1-1-1    linear of order 2
ρ1011111-1-1-1-111111111-1-1-1-11111-1-1-1-1    linear of order 2
ρ1111-11-11-1-11-1-1-111-1-111-1-111-111-1-111    linear of order 2
ρ1211-11-1-111-11-1-111-1-11-111-111-1-1-1-111    linear of order 2
ρ1311-11-111-1-1-1-1-11111-1-11-11-111-1-11-11    linear of order 2
ρ1411-11-1-1-1111-1-11111-11-11-1-1-1-11-11-11    linear of order 2
ρ15111111-11-1-11111-1-1-1-1-111-11-11-111-1    linear of order 2
ρ1611111-11-1111111-1-1-111-1-1-1-11-1-111-1    linear of order 2
ρ17222-2-220200-22-2200000-2-200000000    orthogonal lifted from D4
ρ1822-22-20000022-2-22-220000-20000000    orthogonal lifted from D4
ρ19222-2-2020202-22-2000-2-20000000000    orthogonal lifted from D4
ρ2022-2-22-202002-2-2200000-2200000000    orthogonal lifted from D4
ρ212222200000-2-2-2-22-2-2000020000000    orthogonal lifted from D4
ρ2222-2-22020-20-222-20002-20000000000    orthogonal lifted from D4
ρ23222-2-2-20-200-22-22000002200000000    orthogonal lifted from D4
ρ24222-2-20-20-202-22-2000220000000000    orthogonal lifted from D4
ρ252222200000-2-2-2-2-2220000-20000000    orthogonal lifted from D4
ρ2622-22-20000022-2-2-22-2000020000000    orthogonal lifted from D4
ρ2722-2-2220-2002-2-22000002-200000000    orthogonal lifted from D4
ρ2822-2-220-2020-222-2000-220000000000    orthogonal lifted from D4
ρ298-8000000000000000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of M4(2).C23
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 30)(2 27)(3 32)(4 29)(5 26)(6 31)(7 28)(8 25)(9 18)(10 23)(11 20)(12 17)(13 22)(14 19)(15 24)(16 21)
(1 17)(2 20)(3 23)(4 18)(5 21)(6 24)(7 19)(8 22)(9 25)(10 28)(11 31)(12 26)(13 29)(14 32)(15 27)(16 30)
(1 17 5 21)(2 13 6 9)(3 23 7 19)(4 11 8 15)(10 28 14 32)(12 26 16 30)(18 27 22 31)(20 25 24 29)
(1 29 7 27 5 25 3 31)(2 30 8 28 6 26 4 32)(9 21 15 19 13 17 11 23)(10 22 16 20 14 18 12 24)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,30)(2,27)(3,32)(4,29)(5,26)(6,31)(7,28)(8,25)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21), (1,17)(2,20)(3,23)(4,18)(5,21)(6,24)(7,19)(8,22)(9,25)(10,28)(11,31)(12,26)(13,29)(14,32)(15,27)(16,30), (1,17,5,21)(2,13,6,9)(3,23,7,19)(4,11,8,15)(10,28,14,32)(12,26,16,30)(18,27,22,31)(20,25,24,29), (1,29,7,27,5,25,3,31)(2,30,8,28,6,26,4,32)(9,21,15,19,13,17,11,23)(10,22,16,20,14,18,12,24)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,30)(2,27)(3,32)(4,29)(5,26)(6,31)(7,28)(8,25)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21), (1,17)(2,20)(3,23)(4,18)(5,21)(6,24)(7,19)(8,22)(9,25)(10,28)(11,31)(12,26)(13,29)(14,32)(15,27)(16,30), (1,17,5,21)(2,13,6,9)(3,23,7,19)(4,11,8,15)(10,28,14,32)(12,26,16,30)(18,27,22,31)(20,25,24,29), (1,29,7,27,5,25,3,31)(2,30,8,28,6,26,4,32)(9,21,15,19,13,17,11,23)(10,22,16,20,14,18,12,24) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,30),(2,27),(3,32),(4,29),(5,26),(6,31),(7,28),(8,25),(9,18),(10,23),(11,20),(12,17),(13,22),(14,19),(15,24),(16,21)], [(1,17),(2,20),(3,23),(4,18),(5,21),(6,24),(7,19),(8,22),(9,25),(10,28),(11,31),(12,26),(13,29),(14,32),(15,27),(16,30)], [(1,17,5,21),(2,13,6,9),(3,23,7,19),(4,11,8,15),(10,28,14,32),(12,26,16,30),(18,27,22,31),(20,25,24,29)], [(1,29,7,27,5,25,3,31),(2,30,8,28,6,26,4,32),(9,21,15,19,13,17,11,23),(10,22,16,20,14,18,12,24)]])

Matrix representation of M4(2).C23 in GL8(𝔽17)

000000130
000000134
000013000
000013400
40000000
413000000
001300000
001340000
,
115000000
016000000
001150000
000160000
000011500
000001600
000000115
000000016
,
49000000
413000000
001380000
001340000
00000049
000000413
00004900
000041300
,
138000000
04000000
00490000
000130000
000013000
000001300
00000040
00000004
,
00004900
000041300
000000138
000000134
00490000
004130000
49000000
413000000

G:=sub<GL(8,GF(17))| [0,0,0,0,4,4,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,13,0,0,0,0,0,0,0,4,0,0,13,13,0,0,0,0,0,0,0,4,0,0,0,0,13,13,0,0,0,0,0,0,0,4,0,0,0,0,0,0],[1,0,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,15,16],[4,4,0,0,0,0,0,0,9,13,0,0,0,0,0,0,0,0,13,13,0,0,0,0,0,0,8,4,0,0,0,0,0,0,0,0,0,0,4,4,0,0,0,0,0,0,9,13,0,0,0,0,4,4,0,0,0,0,0,0,9,13,0,0],[13,0,0,0,0,0,0,0,8,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,9,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,0,0,0,0,0,4,4,0,0,0,0,0,0,9,13,0,0,0,0,4,4,0,0,0,0,0,0,9,13,0,0,4,4,0,0,0,0,0,0,9,13,0,0,0,0,0,0,0,0,13,13,0,0,0,0,0,0,8,4,0,0,0,0] >;

M4(2).C23 in GAP, Magma, Sage, TeX

M_4(2).C_2^3
% in TeX

G:=Group("M4(2).C2^3");
// GroupNames label

G:=SmallGroup(128,1752);
// by ID

G=gap.SmallGroup(128,1752);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,352,2019,2804,1411,718,172,2028]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^2=c^2=1,d^2=a^4,e^2=a^6,b*a*b=a^5,c*a*c=a^3,d*a*d^-1=a^5*b,a*e=e*a,c*b*c=e*b*e^-1=a^4*b,b*d=d*b,d*c*d^-1=a^4*c,e*c*e^-1=a^6*c,e*d*e^-1=a^4*b*d>;
// generators/relations

Export

Character table of M4(2).C23 in TeX

׿
×
𝔽